
Rust: A Systems Programming Language with Modern Comforts
Tyler Nienhouse – CSCV 372 – 12/04/2016

Overview
Rust is a systems programming language designed for safety, concurrency,
and speed.[1] It’s development is driven by the idea that not everything must be
a trade-off.[2, 13:00] Rust’s primary unique feature is its resource ownership and
borrowing scheme.

The following research centers around three major topics – a high level of
discussion of what Rust does to accomplish its goals, various companies’
experience using Rust in their production code environments, and how the
resource ownership system affects other aspects of the language.

What Makes Rust Special
Rust’s major competitors are C and C++, with its syntax being based on
C/C++ as well as ML/Haskell.[3, 1:25] What really sets Rust apart from other
languages, though is its semantics and community – rather than the syntax.

Memory Management[3]

Unlike many other modern compiled languages, Rust uses deterministic
destruction of resources instead of Garbage Collection (which would require
an inefficient runtime). Rust provides deterministic destruction with its
ownership system:

● Ownership: Only one party/binding owns a given resource (stack data,
heap data, files, etc.) at any given point of a program. Ownership can be
transferred between parties and the resource is destroyed when the most
recent owner goes out of scope.

● Borrowing: The owner of a resource can delegate two types of borrows:

● Shared: Multiple parties may only access the resource that has been
shared to them, no mutation is permitted during shared borrows.

● Mutable: A single party may access and mutate the data, but no
other parties are permitted to access or mutate the data
simultaneously.

Modern Offerings

Rust also provides a modern set of tools both within the language and as
additional officially maintained applications to set it apart.

● Functional Programming: Rust provides many features characteristic to
functional programming languages[2, 21:40] like lambdas/closures and higher-
order functions.

● Cargo: A build and dependency management tool that replaces many uses
of Makefiles for building as well as provides access to the official Crates.io
repository of prebuilt libraries for use in projects.[1]

● Rustup.rs: The Rust toolchain installer that provides easy access to
downloading, installing, and updating the Rust binaries and source.[1]

Discussion
Reliability

Reliability is Rust’s key focus, and many of the production users agreed that
this was indeed achieved. Thanks to its strong typing system, Rust prevents
common memory errors like dangling pointers, aliasing, and invalidated
iterators.[3] This class of bugs is one of the most common critical security
issues.[4, 52:00]

Costs

Readability / Writability: Rust’s resource ownership paradigm can leads to
the language having a fairly steep learning curve.

Time: Using the compiler to enforce the ownership system and resolve
abstractions adds a decent compiling time cost to using the language.

These costs are often quickly recovered thanks to the lack of time spent on
debugging hard-to-find memory errors.

Concurrency

Rust’s memory management strongly resembles major techniques used for
concurrent programming. For example the mutable borrow resembles the
concept of using a Mutex, and the shared borrows are much like a common
system of readers and writers in a database. Having these concepts in the
language makes concurrency easy.

Conclusion / Future Discussion
While it is unlikely that larger companies will abandon their C and C++ code
like MaidSafe has[4, 27:15] or Mozilla plans to[5], Rust has definitely found a
strong starting point as a niche language that provides systems-level
performance to groups that have stringent safety and correctness
requirements.

Rust is still quite a young language, with its first stable release less than two
years ago, and while it has seen adoption by several major companies it still
has a ways to go before reaches the mainstream. Rust’s use in production will
likely continue to be a hot topic in the years to come.

References
1. “The Rust Programming Language.” Official Rust Documentation. 22 Nov 2016.

2. Turon, Aaron, Niko Matsakis. Opening Keynote. RustConf 2016. 10 Sep 2016.

3. Turon, Aaron. “The Rust Programming Language.” Colloquium on Computer Systems
Seminar Series. Stanford University. 11 Mar 2015.

4. Klabnik, Steve. “Rust in Production.” Philly ETE. 12 Apr 2016.

5. Herman, Dave. “Shipping Rust in Firefox.” Mozilla Hacks. 12 Jul 2016.

6. Saeta, Brennan. “Rust & Docker in production @ Coursera.” Coursera. 7 Jul 2016.

7. Katz, Yehuda. “Rust Means Never Having to Close a Socket.” Skylight.io. 7 Oct 2014.

Re-wrote their C++ distributed storage app entirely in Rust.[4, 27:15]

● Quick to develop with
● 10x reduction in codebase size

● Loss of support from C++
code vendors

Wrote their storage and compression service in Rust.[4, 36:40]

● Safety and correctness
required for storing users’ files

● The compiler becomes slow
on sizable codebase

Shipping Rust code in recent Firefox releases.[5]

● Zero errors in over 1 Billion
executions

● Work required to integrate
with C++ build system

Using Rust to manage automated assignment grading.[6]

● Safely execute untrusted code
● Easy to maintain

● Only a niche component in a
large stack

Used to write a Ruby application performance monitoring tool.[4, 46:10][7]

● No segfaults or resource leak
● No GC pauses affecting stats

● Steep initial learning curve for
developers

https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-1
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-2
https://www.youtube.com/watch?v=pTQxHIzGqFI&t=13m
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-3
https://www.youtube.com/watch?v=O5vzLKg7y-k&t=1m25s
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-3
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-2
https://www.youtube.com/watch?v=pTQxHIzGqFI&t=21m40s
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-1
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-1
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-3
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-4
https://www.youtube.com/watch?v=0emIUsU1_0E&t=52m
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-4
https://www.youtube.com/watch?v=0emIUsU1_0E&t=27m15s
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-5
https://doc.rust-lang.org/book/
https://www.youtube.com/watch?v=pTQxHIzGqFI
https://www.youtube.com/watch?v=O5vzLKg7y-k
https://www.youtube.com/watch?v=0emIUsU1_0E
https://hacks.mozilla.org/2016/07/shipping-rust-in-firefox/
https://building.coursera.org/blog/2016/07/07/rust-docker-in-production-coursera/
http://blog.skylight.io/rust-means-never-having-to-close-a-socket/
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-4
https://www.youtube.com/watch?v=0emIUsU1_0E&t=27m15s
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-4
https://www.youtube.com/watch?v=0emIUsU1_0E&t=36m40s
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-5
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-6
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-4
https://www.youtube.com/watch?v=0emIUsU1_0E&t=46m10s
https://tyler.nien.house/2016/11/rust-a-systems-programming-language-with-modern-comforts/#citation-7

	Slide 1

